Rational Parametrizations, Intersection Theory and Newton Polytopes
نویسنده
چکیده
The study of the Newton polytope of a parametric hypersurface is currently receiving a lot of attention both because of its computational interest and its connections with Tropical Geometry, Singularity Theory, Intersection Theory and Combinatorics. We introduce the problem and survey the recent progress on it, with emphasis in the case of curves.
منابع مشابه
The Newton Polygon of a Rational Plane Curve
The Newton polygon of the implicit equation of a rational plane curve is explicitly determined by the multiplicities of any of its parametrizations. We give an intersection-theoretical proof of this fact based on a refinement of the KušnirenkoBernštein theorem. We apply this result to the determination of the Newton polygon of a curve parameterized by generic Laurent polynomials or by generic r...
متن کاملCombinatorics and Genus of Tropical Intersections and Ehrhart Theory
Let g1, . . . , gk be tropical polynomials in n variables with Newton polytopes P1, . . . , Pk. We study combinatorial questions on the intersection of the tropical hypersurfaces defined by g1, . . . , gk, such as the f -vector, the number of unbounded faces and (in case of a curve) the genus. Our point of departure is Vigeland’s work [33] who considered the special case k = n− 1 and where all ...
متن کاملRemarks on the Combinatorial Intersection Cohomology of Fans
This partly expository paper reviews the theory of combinatorial intersection cohomology of fans developed by Barthel-Brasselet-Fieseler-Kaup, Bressler-Lunts, and Karu. This theory gives a substitute for the intersection cohomology of toric varieties which has all the expected formal properties but makes sense even for non-rational fans, which do not define a toric variety. As a result, a numbe...
متن کاملStrange duality and polar duality
We describe a relation between Arnold’s strange duality and a polar duality between the Newton polytopes which is mostly due to M. Kobayashi. We show that this relation continues to hold for the extension of Arnold’s strange duality found by C. T. C. Wall and the author. By a method of Ehlers-Varchenko, the characteristic polynomial of the monodromy of a hypersurface singularity can be computed...
متن کاملNewton-okounkov Convex Bodies of Schubert Varieties and Polyhedral Realizations of Crystal Bases
A Newton-Okounkov convex body is a convex body constructed from a projective variety with a valuation on its homogeneous coordinate ring; this is deeply connected with representation theory. For instance, the Littelmann string polytopes and the Feigin-Fourier-Littelmann-Vinberg polytopes are examples of Newton-Okounkov convex bodies. In this paper, we prove that the NewtonOkounkov convex body o...
متن کامل